High-speed, high-resolution imaging near surfaces

Volker Sick
The University of Michigan

1878 Eadweard Muybridge

Session on "Extreme Gradients"

 General challenges in imaging in the presence of extreme gradients in time and space

- Wall layers in internal combustion engines
 - Velocities
 - Temperature

Why is this important and interesting?

Motivation for Reciprocating IC Engine Wall Layer Measurements

Heat Transfer

Borman and Nishiwaki, 1987, Prog Energy Combust. Sci.,
 "Internal-Combustion Engine Heat Transfer".

Comprehensive near-wall measurements still unavailable

- Rakopoulos, Kosmadakis, & Pariotis, 2010, Applied Energy,
 "Wall Models in RANS calculations".
- Piomelli & Balaras, 2002, Annul Review Fluid Mechanics,
 "Wall-Layer Models for LES"

Sponsors

- National Science Foundation (CBET, Fluid Dynamics Division),
 USA
- General Motors Collaborative Research Laboratory on Engine Systems Research at the University of Michigan
- The University of Michigan, USA
- Fraunhofer USA & Fraunhofer Germany
- Center of Smart Interfaces, TU Darmstadt, Germany
- Public Authority for Applied Education and Training, Kuwait

Credits

Ali Alharbi^{1,2}, Michael E. Cundy¹, Louise Lu¹, David Reuss¹, Matthias Ihme¹
Andreas Dreizler³, Christopher Jainski³, Philipp Trunk³

- 1 Department of Mechanical Engineering, The University of Michigan, Ann Arbor, Michigan, USA
- 2 Department of Mechanical Power and Refrigeration, College of Technological Studies PAAET, Shuwaikh, Kuwait
- 3 Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany

Session on "Extreme Gradients"

- Changes in observables
 - happening fast and not repeatable (μs)
 - Need movie cameras
 - over short distances (μm)
 - Need microscopes

Smith and Sick, Applied Physics B 2005

Michigan Engineering

Challenges (some of more...)

- Signal strength
 - Doubling spatial resolution in LIF reduces signal by factor 8
- Laser pulse energy
 - Operating at limit of optical materials
 - Damaging surfaces
- Imaging systems
 - Camera noise
 - Intensifier issues

Resolution / Frame Rate

Laser induced fluorescence

- Traditional
 - 100 mJ/pulse
 - 0.5*0.2*0.2 mm measurement volume

- High-speed, high-resolution
 - 1 mJ/pulse
 - 0.1*0.02*0.02 mm measurement volume

Signal reduction > 10⁴

Particle Image Velocimetry

- 5-10 particles/interrogation window
- Increasing spatial resolution means increasing seeding density
 - From drizzle to downpour

http://www.telegraph.co.uk/topics/weather/8117127/Fortnight-of-rain-to-fall-in-24-

hours.html

Michigan Engineering

Wall Layers in IC Engines

- Not the result of steady-mean shear
- Free stream contains large-scale structures compressed (10:1) \rightarrow ΔP , ΔT , ΔL
- Wall region experiences variability of large scale/large KE structures
 - Intra cycle
 - Cycle-to-cycle
 - Flow reversal
 - Cylinder wall covered/exposed by piston.
 - → unsteady

Steady flow boundary layer

Symbols correspond to direct numerical simulation results for Re = 900 (Wu & Moin, 2009).

UM Stratified-Charge Spark-Ignited Direct-Injection Engine

- 4-valve pentroof combustion chamber,
- Near-central 8-hole fuel injector,
- Spray-guided spark ignition
- Motored, 800 RPM

Outer flow overview, low res. PIV

ngineering

Resolving the boundary layer flow

High magnification is achieved with a long distance microscope

High-Speed Velocity Measurements

Movie of near wall flow during compression every 2 degrees during one cycle

High-Speed Velocity Measurements

Average velocity profile

- 180: Bottom dead center
- 360: Top dead center compression

Temperature imaging in Boundary Layers

Worked done jointly with P. Trunk and A. Dreizler at TU Darmstadt

Temperature in a Boundary Layer

- Suppression of scattered laser light is adequate to obtain temperature data within the boundary layer
- Cold, detaching flares observed in boundary layer

Thermal Boundary Layer in the UM Engine

One lens/camera/intensifier images both channels

- Eliminates problems with highspeed intensifier depletion
- Enables better access for additional diagnostics to the engine

Split-Image Optics

Michigan **Engineering**

First Results

600 rpm, motored, N₂ & Air, TDC, 20 Hz Nd:YAG, 1 image/cycle, 2 mJ/pulse

Conclusions

- High frame rate measurements (few kHz) at micron resolution near surfaces
 - Velocity data currently put in context with existing wall models
 - Temperature imaging, feasibility shown; laser needed for high-speed imaging
 - First steps taken, but
 - Need higher frame rates, larger format cameras, and more (UV) pulse energy

